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The structure of flow and heat exchange in a horizontal, heated from below, layer of liquid whose
boundaries can rotate with the same and different angular velocities have been studied numerically
and experimentally. The relative role of buoyancy and centrifugal forces in the formation of the flow
structure of liquids with Pr = 16 and 2700 was investigated.

In a series of works [1−3], we carried out experimental and numerical investigations of heat transfer
and flow structure in horizontal layers of liquid which are enclosed between rigid boundaries that may rotate
differentially and which are uniformly heated from below. This thermohydrodynamic system represents the
generalization of two classical problems: the Rayleigh−Benard convection and the flow induced by a rotating
disk or two disks, in the gap between them. The investigations were undertaken to elucidate the relative role
of buoyancy and centrifugal forces in the formation of the flow structure and to study the relationship be-
tween the local distinctive features of the flow and local heat fluxes. Calculations and experiments were car-
ried out for liquids with Pr = 16 (96% ethyl alcohol) and Pr = 2700 (PE′S-5 silicon−organic liquid). The
geometric parameters of the problem were fixed: the height of the liquid layer H = 45 mm; the radius of the
container (and of the lower boundary of the layer) R2 = 330 mm; the radius of the upper boundary R1 = 320
mm. In the physical experiment the initial states were as follows: a Rayleigh−Benard steady-state turbulent
convection in a motionless or uniformly rotating layer [4−6]. Starting from one of these states, we experimen-
tally investigated regimes with differential rotation of the boundaries in the range of angular velocities ±4.6
rad/sec. This system is considered, in particular, as a full-size model of a variant of the Czochralski method
[2, 7], with bottom heating used for drawing large-size single crystals (of diameter of up to 600 mm) from
melts. To solve the technological problems, such as the selection of an optimum range of geometrical and
dynamic parameters that characterize the regimes of integral and local heat and mass exchange at the front of
crystallization, information on the general properties of this type of thermohydrodynamic systems is needed.

The model is formulated for an axisymmetric case in a fixed coordinate system. The geometry of the
computational domain that corresponds to the scheme of the working section of the experimental rig [1, 2] is
shown in Fig. 1. Here Γ1 is the upper cold boundary; Γ2 is the hot lower boundary which is integral with the
adiabatic side wall Γ4; Γ3 is the symmetry axis; Γ5 is a portion of the free boundary of the liquid.

As a mathematical model of thermal gravitational-centrifugal convection the following equations and
boundary conditions were adopted:
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The numerical investigations were carried out by the method of finite elements. A dimensional sys-
tem of equations in the natural variables Vr, Vz, Vϕ, p, and T was solved. The velocity and temperature com-
ponents were expanded over the piecewise-bilinear basis, and the pressure over the piecewise-constant basis.
In the evolutional algorithm the linearization and autonomization of separate equations and of their groups
were performed on the basis of the Runge−Kutta scheme of the second order of accuracy. The diffusion terms
were approximated following the Euler implicit scheme. The discretized equations of diffusion/convection

Fig. 1. Schematic diagram of the computational domain.
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were solved by the conjugate residual method. The pressure field in the calculations for Pr = 16 was sought
with the aid of the SIMPLER algorithm and for Pr = 2700 with the aid of a self-sustained computational
procedure. To ensure the convergence of iteration algorithms, the SLAE (systems of linear algebraic equa-
tions) scaling was applied.

With increase in the angular velocity of rotation on the whole up to 100 rpm, the evolution of an
axisymmetric spatial form of convective flow of liquids with Pr = 16 and 2700 was investigated in [3]. The
corresponding radial distributions of instantaneous local heat fluxes are shown in Fig. 2. The base regime of
flow in the motionless layer for Pr = 16 corresponds to the value of the Rayleigh number Ra = 6.87⋅105 (Fig.
2a). The effect of a decrease in the horizontal size of cellular flow with increase in ω, observed experimen-
tally in [5, 6], was reproduced numerically at angular velocities of rotation of up to 10 rpm. This effect is
most vivid at moderate values of Pr numbers. For Pr = 16 and sufficiently small values of ∆T and ω, an
axisymmetric and virtually stationary cellular structure is established. The size of the cells decreases but little
in the radial direction. The increase in ω leads to flow stabilization, whereas the increase in ∆T leads to an
increase in the degree of nonstationarity: the structure breathes, the horizontal size of the cells undergoes a
change in time, and waves of expansion and contraction of rolls run over the structure. These waves are
generated near the center, where a cell of thermogravitational nature is preserved up to large values of ω.
Local heat fluxes change correspondingly. The local maxima (see Fig. 2) correspond to ascending streams of
the heated liquid that impinge on the upper cold boundary. At Pr = 2700 in the state of the motionless layer
the convective rolls have a more clearly expressed radial inhomogeneity of their size. On imposing a weak
centrifugal acceleration (ω ≤ 10 rpm), the size of the axial roll begins to exceed the size of the peripheral roll
by approximately 20%, with the decrease in the wavelength in the radial direction being monotonic. With a
further increase in the angular velocity the spatial form of flow experiences a greater and greater influence of
centrifugal forces. As ω increases, the degree of inhomogeneity of the size increases, and in this case the
effect of compression of cells is not observed. This effect is masked by another one: as ω increases, the size
of the rolls with clockwise liquid circulation increases and the rolls with counterclockwise circulation are
compressed, i.e., in the field of centrifugal forces the flow in rolls with clockwise circulation of liquid is
sustained and with counterclockwise circulation is suppressed (decelerated). Finally, the cellular structure of a
thermogravitational nature is suppressed, and a large-scale flow of nonisothermal liquid in the field of cen-

Fig. 2. Dependence of radial distributions of the local heat flux on the
surface Γ1 on the angular velocity of the rotation of the layer: a) Pr =
16; [1) ω = 2 rpm; 2) 10]; b−d) Pr = 2700; b) ω = 2 rpm; [1) Ra =
234,755; 2) 23,475]; c) Ra = 23,475; [1) ω = 80 rpm; 2) 40]; d) Ra =
234,755; [1) ω = 80 rpm; 2) 40]. r, mm.
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trifugal forces originates which is similar to the flow in the vertical liquid layer in the gravity field enclosed
between the walls heated to different temperatures. Correspondingly, the character of the radial distribution of
local heat fluxes changes from a periodic one, typical of a cellular structure (Fig. 2a, b) to a monotonic de-
crease downstream typical of a laminar boundary layer (Fig. 2c, d, curves 1). The asymmetry of rolls in a
convective cell is reflected on q(r) (curves 2 in Fig. 2c, d). The centrifugal flow first of all occupies the
periphery of the layer. An axisymmetric cell, in which a flow is formed under the gravity field, remains in
the axial region.

The dependence of the integral coefficient of heat transfer (the Nusselt number Nu = qi
 ⁄ (λ∆T ⁄ H),

where qi = (1 ⁄ mes Γi) ∫ λ(∂T ⁄ ∂z)dΓi) on ω is presented in Fig. 3. When Pr = 16, a weak monotonic increase

in Nu is observed with increase in ω from 0 to 5 rpm, which is due to the increase in the number of increas-
ingly shorter laminar boundary layers on the horizontal boundaries within the limits of separate rolls. When
5 ≤ ω ≤ 10 rpm, a further increase in the number of rolls in the radial direction and decrease in their horizon-
tal size leads to a decrease in the integral heat flux, since a more intense heat exchange between the ascend-
ing (hot) and descending (cold) liquid streams begins. The formation of a large-scale flow with a further
increase in ω leads to the next, more substantial, decrease in the integral heat flux. Curves 2 and 3 show a

similar function Nu(ω) in the case of Pr = 2700 for Ra = 234,755 and Ra = 23,475, respectively.
In the regimes of differential rotation of boundaries, starting from the state of uniform rotation of the

layer as a whole, the following features and stages of development of the flow structure are observed (Fig.
4). In the state of uniform rotation at Ra = 234,755 and Pr = 2700 when ω1 = ω2 = 10 rpm, the flow has
rather a regular cellular structure (Fig. 4a). When the speed of rotation of the upper boundary decreases, the
flow becomes highly irregular in the radial direction, light deceleration (no more than by δω1 = −0.04 rpm)
of the upper boundary Γ1 first causes enhancement (i.e., increase in the horizontal size) of the rolls with
liquid counterclockwise circulation (Fig. 4b) and then (at δω1 = −0.2 rpm) development of a large-scale cen-
trifugal cell (Fig. 4c) with the same direction of circulation. A slight increase in the speed of rotation of Γ1

(at δω1 = +0.2 rpm) leads to the development of a centrifugal cell, but due to the enhancement of rolls with
clockwise circulation. A substantial increase in ω1 (δω1 = +4 rpm) leads to the development of a large-scale
forced flow (Fig. 4d; here, there is clockwise circulation of liquid) that completely suppresses the initial cel-
lular flow. Complete stop of the upper boundary leads to the formation of a forced flow in which liquid is
drawn to the rotating lower boundary in the axial region. In this case, the form of flow resembles that shown
in Fig. 4d but with counterclockwise circulation of liquid. The evolution of the upper boundary in the direc-
tion opposite to the lower boundary leads to the formation of a flow with liquid drawn in the center of the
layer to the upper boundary (Fig. 4e−g). In this case, a kind of competition is observed: with the motionless
upper boundary the drawing of liquid in the center toward the rotating lower boundary, and then, as ω1 in-

Fig. 3. Dependence of the dimensionless integral heat-transfer coefficient
on the angular velocity of rotation of a liquid layer. ω, rpm.
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creases, the drawing of liquid from the core and downward and upward to both rotating boundaries (Fig. 4f).
Thereafter, complete domination of the flow is observed in which the liquid is drawn to the upper boundary,
and there is a spatial shape similar to that shown in Fig. 4d. Despite the great difference in the starting con-
ditions, this scenario of the rearrangement of flow structure agrees on a qualitative level with that observed
experimentally in [1]; this first of all relates to the stages of formation of a forced large-scale flow and the
corresponding changes in the integral heat flux.

The rearrangement of the structure of flow is accompanied by a change in the integral heat flux
through the liquid layer (Fig. 5), the general trends of which also coincide qualitatively with those found
experimentally in [1]. Figure 5 presents the values of the heat flux on the upper and lower boundaries of the
layer; comparison of the data allows one to judge the heat flux balance and the accuracy of the calculations.
In the regime of uniform rotation of the layer ω1 = ω2 = 10 rpm, Nu has a local maximum. On change in
the angular velocity of the upper boundary to either side, the rearrangement of the flow structure is accom-
panied by a decrease in Nu. In the experiment this is caused by laminarization of a turbulent boundary layer
(the portion of the small-scale cells of Rayleigh−Benard nature disappears) on a rotating surface. In the case
analyzed, a similar effect is caused by a decrease in the number of cells that have dimension equal to H
along the vertical. Transition from the cellular form of flow to a large-scale centrifugal convection and its
intensification are accompanied by a monotonic increase in Nu with increasing ωi. On deceleration and evo-
lution of the upper boundary to the opposite side, the value of Nu attains a maximum value at ω1 = 0. There-
after, a monotonic decrease in the integral heat transfer up to the attainment of the local minimum at ω =
−7.5 rpm is observed. The local minimum is explained by the formation of a retarded liquid layer near the
upper boundary (screening of the cold boundary of the cold liquid) (Fig. 4e). The formation of the centrifugal
flow near the upper boundary leads to a slight monotonic increase in Nu. The maximum value is attained in
the regime when symmetric centrifugal fluxes near both boundaries are formed. A further increase in the

Fig. 4. Dependence of the spatial form of flow (isolines of the stream
function of an axisymmetric flow) on the angular velocity of rotation of
the upper boundary ω1 for ω2 = 10 rpm; Ra = 234,755; Pr = 2700.
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evolution leads to suppression of the centrifugal flow near the lower boundary, screening of the heated sur-
face by a heated liquid, and an insignificant monotonic decrease in the integral heat flux with attainment of
the local minimum at ω = −14 rpm. The formation of the centrigal flow with an ascending stream to the
upper boundary, which almost completely suppresses the flow near the walls of the container, and its inten-
sification with increase in ω1 are accompanied by a monotonic increase in Nu. 

Figure 6 presents experimental data on heat transfer and radial distribution of temperature that supple-
ment the results of [1, 2]. Here Nu* = Nu/Ra1/3; Nu = QH ⁄ λ(T2 − T1); Ti

∗  = (Ti − T1)/(T2 − T1); i is the num-
ber of thermocouples positioned at the level z = 7 mm from the upper boundary and at the following
distances from the center of the layer: 1) r = 2 mm; 2) 53; 3) 103; 4) 147; 5) 200; 6) 242; a, b) ω1 = 0.105
rad/sec; c, d) ω1 = 0.41 rad/sec. The value of Ra is approximately equal to 2⋅107; Pr = 16 and Re2 = ω2R2

2 ⁄ ν.
At a fixed angular velocity of the upper boundary, the speed of rotation of the lower boundary changed
smoothly. The measurements were carried out in the steady-state regime of heat exchange. The local sharp
maximum on the Nu*(Re2) curves corresponds to the regimes with ω1 = ω2. The process of laminarization of
a boundary layer with change in the speed of rotation of one of the walls was observed through a transparent

Fig. 5. Dependence of the dimensionless integral coefficient of heat trans-
fer on the angular velocity of rotation of the upper boundary. ω1, rpm.

Fig. 6. Dependence of the normalized dimensionless integral heat flux (a,
c) and radial distribution of the dimensionless temperature (b, d) on the
angular velocity of rotation of the lower boundary.
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upper boundary. In addition to direct observation of the motion of a visualized liquid, the radial stratification
of the liquid by temperature serves as an indicator of the origination of a large-scale centrifugal flow. It
manifests itself most vividly at large values of Re2 (Fig. 6b, d). During the start from the state of turbulent
thermogravitational convection the excitation of a global meridional flow has a threshold character and de-
pends on the value of Ra. The excitation of this flow and its intensification with a further increase in the
absolute value of Re2 lead to a monotonic increase in heat transfer. The rearrangement of flow in transition
from the regime of free convection to a forced one is rather complex. It is seen from Fig. 6a, b that at the
given parameters the process of rearrangement differs insignificantly from a similar transition during the start
from the state of a motionless layer ([1], Fig. 2a). The singularity as the asymmetry of the function Nu*(Re2)
is nevertheless present. The data presented in Fig. 6c, d are of interest because they show the presence of
regimes with an almost constant integral heat flux in a certain range of Re2 and simultaneously the presence,
in a narrower region of parameters, of the states with the absence of radial stratification by temperature under
the cold rotating surface. These regimes are of greatest interest from the technological point of view [1, 7].

Thus, we have shown numerically and experimentally that, starting from different regimes of
Rayleigh−Benard convection (laminar cellular or turbulent), the superposition of the field of centrifugal forces
by different means (rotation of the layer as a whole or differential rotation of boundaries) leads to certain
universal stages of evolution of the flow structure and universal laws governing the change in local and inte-
gral heat exchange.

This work was carried out with financial support from the Russian Foundation of Basic Research
(project code 99-01-00544) and Integration projects of the Siberian Branch of the Russian Academy of Sci-
ences Nos. 2000-49 and 2000-55.

NOTATION

H, height of a layer of liquid; R1, radius of the upper boundary of the layer; R2, radius of the lower
boundary of the layer; t, time; r, z, and ϕ, cylindrical coordinate system; ρ, density; ρ0, density at T0; µ0,
molecular viscosity at T0; Cp0, heat capacity at T0; λ, thermal conductivity; λ0, thermal conductivity at T0; ν,
coefficient of kinematic viscosity; a, thermal diffusivity; q, local heat flux; g, gravity acceleration; Vr, Vz, and
Vϕ, radial, axial, and azimuthal velocity components; p, pressure; T, temperature; T0 = (T1 + T2)/2; ∆T =
T2 − T1; ω, angular velocity; ω1, angular velocity of the upper boundary; ω2, angular velocity of the lower
boundary; Pr = ν ⁄ a, Prandtl number; Ra = (βg ⁄ aν)∆TH3, Rayleigh number; Rei = ωiRi

2 ⁄ ν, Reynolds number;
Nu = QH ⁄ λ(T2 − T1), Nusselt number. Subscripts: 1, upper boundary; 2, lower boundary.
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